Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

M.E Sem-I Regular Examination January / February 2011

Subject code: 710423N

Subject Name: Neuro Computing and Applications

Date: 03 /02 /2011 Time: 02.30 pm – 05.00 pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Enlist various activation functions used in single and multilayer neural 07 networks. Explain any two of them in brief.
 - **(b)** Describe in brief following factors affecting the performance of artificial **07** neural network models.
 - i) Number of hidden Nodes
 - ii) Range of normalization of training data.
- Q.2 (a) Explain in brief the necessary steps for Back Propagation Learning 07 algorithm. Clearly mentions all assumptions made.
 - **(b)** What is generalization of neural networks? Enlist and explain useful **07** properties and capabilities offered by neural networks.

OR

- (b) Discuss: "Initialization of interconnecting weights and type of activation 07 function are important factors for successful training".
- Q.3 (a) Why learning is required? Explain Hebbian and Perceptron training rules for 07 neural training.
 - (b) What is the importance of Delta learning rule? Justify with proper derivation 07 an explanation "Delta learning is called error correction learning".

OR

- Q.3 (a) Draw basic architecture for Hebb networks. Write algorithm for Hebb 07 Learning.
 - (b) Explain concept of linear reparability. Apply Hebb net to the training patterns that define XOR function with bipolar input and targets. Critically evaluate result.
- Q.4 (a) Explain algorithm used for training the perception net clearly mentioning all 07 assumption made.
 - (b) Consider an auto associative net with the bipolar step function as the activation 07 function and weights set by Hebb rule with main diagonal elements set to zero.
 - a) Find the weight matrix to store vector $\mathbf{v} = (1 \ 1 \ 1 \ 1 \ -1 \ -1)$
 - b) Test the response of the network with the same input.

OR

Q.4 (a) Enlist different neural architectures of Associative Memory models. Explain two 07 layer models with necessary details.

- (b) Consider three orthogonal vectors [1-11-1][-111-1][11-1-1]. Find 07 the weight matrix to store all three orthogonal vectors and test the response of the network for any one of the input.
- Q.5 (a) Explain competitive learning neural network with necessary diagram. 07 Explain different criterions being used for competition.
 - **(b)** What is stability –plasticity dilemma? List related questions that one need to **07** address to resolve the dilemma.

OR

- Q.5 (a) Explain basic Adaptive Resonant Theory (ART) architecture. 07
 - **(b)** Consider six number of points in two dimensional Euclidian space (x,y) as **07** shown below.

	Input pattern coordinates		
Point	X	Y	
1	2	3	
2	1	3	
3	2	6	
4	3	6	
5	6	3	
6	7	4	

Determine clusters using VQ. Assume threshold distance 2.5.
