Seat No.:	Enrolment No
-----------	--------------

Subject code: 712001

GUJARAT TECHNOLOGICAL UNIVERSITY

ME Semester –I Examination Feb. - 2012

Date: 11/02/2012

Subject Name: Advanced Structural Analysis			
Tim	ie: 1	0.30 am – 01.00 pm Total Marks: 60	
Instructions:			
	2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Take $E=2 \times 10^8 kN/m^2$, $I_Z=0.001 m^4$, $A_X=0.01 m^2$, $I_X=0.002 m^4$ and $G=8 \times 10^7 kN/m^2$ unless and otherwise given.	K
Q.1	(a)	For the truss shown in Figure 1, obtain rearranged joint stiffness matrix.	06
	(b)	Advantage of symmetry may be taken. Determine free joint displacements, support reactions and member end-actions for the truss shown in Figure 1 using stiffness member approach. Tabulate the member forces.	06
Q.2	(a) (b)	Obtain assembled flexibility matrix for the whole truss shown in Figure 2. Calculate joint displacements, support reactions and member end-actions for the truss shown in Figure 2 using flexibility member approach. Tabulate the member forces.	06 06
		OR	
	(b)	Define the types of non-linearity, list the methods of non-linear analysis and explain any one of them in detail.	06
Q.3	(a)	Obtain the rearranged joint stiffness matrix of a composite structure shown in Figure 3. Beam AC is made of concrete ($E = 20GPa$) with rectangular cross-section of 150 mm x 230 mm, while cable BC is made of steel ($E = 200 GPa$) with 12 mm diameter.	06
	(b)	Derive rotation transformation matrix for a space truss member. OR	06
Q.3	(a)	Construct the rearranged joint stiffness matrix for the plane frame shown in Figure 4.	06
	(b)	Determine free joint displacements, support reactions and member end-actions for the plane frame shown in Figure 4 using stiffness member approach. Also draw free body diagrams.	06
Q.4	(a) (b)	Explain substructure technique of analysis giving example of a plane truss. Derive stiffness matrix for a beam member considering shear deformation. OR	06 06
Q.4	(a)	Obtain assembled flexibility matrix for the whole plane frame shown in Figure	06
	(b)	5. Calculate joint displacements, support reactions and member end-actions for the plane frame shown in Figure 5 using flexibility member approach.	06
Q.5	(a)	Explain method to solve simultaneous equations giving computer program.	06

(b) Obtain load vector for the continuous beam shown in Figure 7, if (i) support A sinks by 5 mm (ii) support C rotates counterclockwise by 0.05 radian and (iii) temperature of BC member is increased so that the top and bottom fibers are at 40 °C and 50 °C, respectively. Assume depth of members as 300 mm and coefficient of thermal expansion as 1.2 x 10⁻⁶ per °C. Omit the external loads.

OF

- Q.5 (a) Obtain the rearranged joint stiffness matrix and load vector for the grid shown in Figure 6.
 - (b) Obtain the rearranged joint stiffness matrix and load vector for the continuous 06 beam shown in Figure 7.

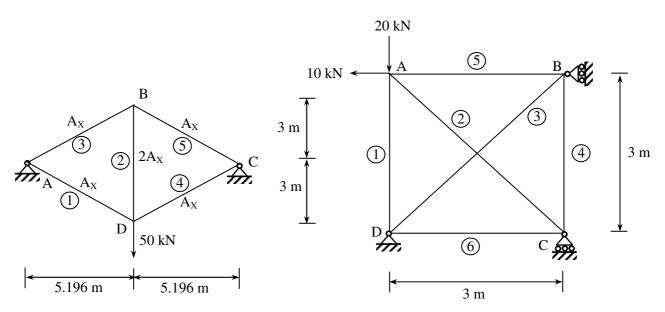


Figure 1

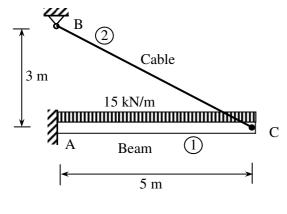


Figure 3

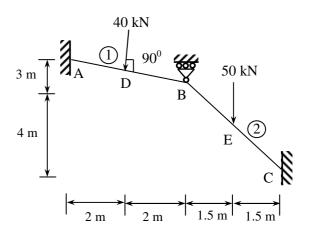


Figure 2

Figure 4

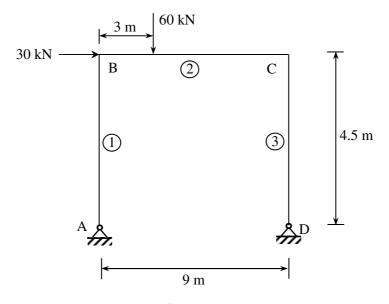


Figure 5

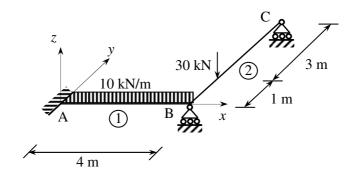


Figure 6

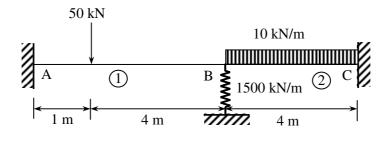


Figure 7