	Seat N	No.: Enrolment No.	
		GUJARAT TECHNOLOGICAL UNIVERSITY	
		M.E –II st SEMESTER–EXAMINATION – JULY- 2012	
	Subj	ect code: 1720709 Date: 12/07/2012	
	Subj	ect Name: Advanced Power Converters	
	Time	e: 10:30 am – 13:00 pm Total Marks: 70	
	Instr	ructions:	
	1.	Attempt all questions.	
		Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	
Q.1	(a)	Discuss in brief the significance of Δ/Z transformers in context to the multipulse converters and derive the necessary equations for a Δ/Z -1 configuration that helps to determine the number of turns to achieve the desired phase shift.	07
	(b)	How are resonant DC-DC converters different from that of conventional DC-DC converters? Explain the operation of series loaded resonant (SLR) half-bridge DC-DC converter operating in discontinuous mode.	07
Q.2	(a)	What does one mean by multi-pulse converter? What are its advantages? With appropriate block-diagram explain how a 12 pulse converter can be obtained.	07
	(b)	Derive the equation for the inductor current in the following resonating circuit. I_{L0} and V_{c0} are initial conditions (values at $t=0$) for inductor current and capacitor voltage, respectively.	07
		$V_d \stackrel{+}{=} C_r \stackrel{+}{=} v_c$	
		OR	
	(b)	With neat waveforms discuss the operation of ZCS (Zero Current Switching) resonant switch converter.	07
Q.3	(a)	What factors lead to deviation of neutral-point voltage? How can this deviation be minimized in a three level diode clamped inverter?	07
	(b)	Why does one require bi-directional switches for a matrix converter? How can such bi-directional switches be obtained? Also, critically evaluate/compare these bi-directional switches. OR	07
Q.3	(a)	State the two basic rules to be observed for operating the switches of a Matrix converter and hence, group the possible switching state combinations of a 3-phase Matrix converter. Also, discuss the significance of LC filter in context to the converter.	07
	(b)	Discuss the four-step current commutation strategy for Matrix converter.	07
Q.4	(a)	Draw the space vector diagram for diode-clamped 3-level inverter. Hence, derive the dwell time equations for the space vectors for any one region.	07
	(b)	Write a brief note on NPC/H-bridge inverter.	07

OR

List the advantages of static active reactive power compensators over conventional passive 07 **Q.4** reactive power compensators. Also, discuss the scheme for instantaneous reactive power compensation.

Write a brief note on UPFC converter. **Q.4**

Draw a one line diagram of an HVDC transmission system for interconnecting two ac systems 07 Q.5 and explain the functions of component involved in it.

(b) What is MPPT when referred to solar photovoltaic systems? How is it achieved with a DC-DC 07 converter feeding a DC load?

OR

(a) With neat diagram explain the operation of seven-level cascaded H-bridge inverter employing **Q.5** 07 phase-shifted multi-carrier modulation control.

Discuss in brief how to control the converters for HVDC transmission system. **(b)**

07

07