Seat No.:	Enrolment No.
-----------	---------------

GUJARAT TECHNOLOGICAL UNIVERSITY

M. E. - SEMESTER - II • EXAMINATION - SUMMER • 2013

	•	code: 1720705 Date: 03-06-2013	
	•	Name: Application of Power Electronics in Power System 0.30 am – 01.00 pm Total Marks: 70	
		tions:	
1118	oti uc	 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
Q.1	(a)	Explain (a) Load Compensation and (b) System Compensation and its effect on transmission line and load side.	07
	(b)	Discuss relative importance of controllable parameters regarding the possibilities of power flow control.	07
Q.2	(a)	Explain Selective Harmonic-Elimination Modulation (SHEM) technique used in BVSI.	07
	(b)	Define and explain following in brief. a) UPFC b) STATCOM c) SVC d) FACTS controller OR	07
	(b)	For a given symmetrical long transmission line, a designer wants to maintain mid-point voltage to be near to end point voltages. Derive the expression for the mid-point voltage of symmetrical line as a function of power flow.	07
Q.3	(a)	For a given 735 kV, 50 Hz, 950 km long, symmetrical transmission line with $l = 0.95$ mH/km, $c = 12.1$ nF/km mid- point compensated line, the operating load angle—can be varied from 20° to 55°. Find the MVAR capacity range for var compensator. The mid-point voltage V_{mc} is to be held at 1.08 p.u. Also comment on result.	07
	(b)	Explain the basic concepts of NGH-SSR damping scheme. OR	07
Q.3	(a)	For a given 735 kV, 50 Hz, 1000 km long, symmetrical transmission line with $l=0.95$ mH/km, $c=12.5$ nF/km mid-point compensated line, find uncompensated real power (P_s), compensated real power (P_{comp}) with unlimited capacity compensator at midpoint with maintained mid point voltage to be 1.03 p.u. and injected reactive power (Q_v). The value of load angle is 30°. Also	07
	(b)	comment on results. Explain TCSC constant-angle (CA) controller model in detail. Also draw the block diagram of CA controller with PI regulator.	07
Q.4	(a) (b)	Write the operating principle of IPFC and also list its applications. Draw the waveforms of current through TCR, voltage across thyristor and voltage across inductor for firing angle $= 90^{\circ}$, $= 105^{\circ}$, $= 150^{\circ}$ and $= 180^{\circ}$.	07 07
		OR	
Q.4	(a) (b)	Explain series and shunt compensation and their advantages and disadvantages. Explain losses occurred in single module and multi-module TCSC in detail.	07 07
Q.5	(a) (b)	Compare synchronous condenser and STATCOM. Explain operating characteristic of FC-TCR with step down transformer. OR	07 07
Q.5	(a)	Explain the steady-state model and characteristics of STATCOM.	07

(b) Derive expression of net reactance of the TCSC in per units of the nominal reactance of the fixed capacitor (X_C) . Also draw the variation of per-unit TCSC reactance as a function of firing angle.

07