Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

M. E. - SEMESTER – I • EXAMINATION – SUMMER • 2013

Subject code: 711507N					Date: 17-06-2013						
Subject Name: Numerical Methods											
Time: 10.30 am – 01.00 pm						Total Marks: 70					
Instructions:											
		Attempt all questions.									
		Make suitable assumptions wherever necessary.									
	3.	Figures to the right indicate full marks.									
Q.1	(a)	Define following types of errors (i) Absolute and relative errors									06
	()		(ii) Inherent errors (iii) Round-off errors (iv) Truncation errors								
	(b)	(i) Determine	(i) Determine the absolute and relative errors involved if $x = 22/7$ is								
		represented in normalised decimal form with 6 digits by (a) round-off (b)									
		truncation.									
		(ii) Determine the true error and true percentage relative error for each case.									
		(a) If the measured length of a track is approximated by 5999 cm and the true value is 6000 cm (b) If the measured length of a track is approximated									
		by 59 cm and the true value is 60 cm.									
Q.2	(a)					ct to tv	vo deci	mal	places us	ing suitable	07
	. ,	method.	1								
	(b)	\mathcal{U}									07
		$y = ax^2 + bx + bx$			n Tal						
		X	10	20		40				90	
		У	55	70		125 D		160	J	300	
	(b)	OR Enlist and compare methods for curve fitting.									07
0.3	, ,										
Q.3	(a)									07 07	
	(b)	X	Construct the divided difference table for data x 0.5 1.5 3.0 5.0 6.5 8.0								
		f(x)	1.625	5.875	31.0		131.0		282.125	521.0	
		Find the val		2.072	51.	<u> </u>	151.0		202.125	021.0	
Q.3	(a)	OR Derive the transgium and mid ordinate rule for numerical integration 07									07
Q.5	(a)	Derive the trapezium and mid-ordinate rule for numerical integration. 07								U /	
	(b)		C C								
		three-point C	_					CI.		1.0	. –
Q.4	(a)										07
		a simply sup Take EI cons		am subject	ea to	centra	ai point	юа	a and full	span UDL.	
	(b)										07
	(0)	load by finite									0,

- Q.4 (a) Explain the procedure to analyse plate using finite difference method.
 Q.4 (b) Calculate support reactions for a prismatic fixed beam subjected to two point loads spaced at 1/3 span, using finite difference method.
- Q.5 (a) Apply the Euler method to the ordinary differential equation, dy/dx = x+y y(0) = 1, using increments of size h = 0.1. The exact solution is $y = 61 \text{ ó } x + 2e^x$. Determine the error and the percentage error at each step.
 - (b) Determine the largest eigen value and corresponding eigenvector of the 07 matrix A=[1 1 1; 2 1 2; 1 3 2]

OR

- Q.5 (a) Solve the following equations by Gauss Jordan method: x + y + z = 14x + 3y z = 63x + 5y + 3z = 4
 - **(b)** Write C++ program for any method for solution of linear simultaneous **07** algebraic equations, except asked above.
