Se	at No.:	Enrolment No	
		GUJARAT TECHNOLOGICAL UNIVERSITY M. E SEMESTER – II • EXAMINATION – SUMMER • 2014	
	•	code: 1721203 Date: 20-06-2014 Name: Design of Canal Network and Regulation Work	
		2:30 pm - 05:00 pm Total Marks: 70	
In		tions:	
	2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Name different types of lining done on the channels. What are the factors that influence the choice of a particular type of lining?	07
	(b)	What is meant by regime of a river? Compare briefly the silt theories of Kennedy and Lacey.	07
Q.2	(a) (b)	Explain the term Outlet. What are the essential requirements of a good outlet? Design an irrigation canal by Laceyøs theory for the following data: F.S.D = $14 \text{ m}^3/\text{sec}$, f = 1, Side slopes ½ : 1 (Horizontal : Vertical), Coefficient of rugosity N = 0.0225	07 07
	(b)	An irrigation canal has been constructed with following parameters: Full supply discharge = 45 cumec Bed width = 30 meter Full supply depth = 1.8 meter Side slopes = ½:1 Bed slope = 1 in 6600 Manning N =0.0225 Critical velocity ratio = 1	07
Q.3	(a)	Check whether the section designed satisfies Kennedyøs theory. State the different causes of failure of weirs founded on permeable soils with	07
	(b)	remedies. Design a concrete lined channel to carry a discharge of 200 cumec at a slop of 0.1 per 1000. The side slopes of the channel are 1.25 : 1 and N may be taken as 0.016 Velocity = 1.4 m/sec	07
		OR	
Q.3	(a) (b)	Explain Laneøs weighted creep theory. Determine the most efficient cross-section of a trapezoidal canal to carry the water at the rate of 15 cubic meter per second. To prevent scouring the maximum velocity is not to exceed 1 meter/second. The side slope of the canal $2:1(Horizontal: vertical)$. Take $C=60$, determine bed slope for the canal.	07 07
Q.4	(a)	What corrections are required in determining seepage pressure by method of independent variables	07
	(b)	Two sheet piles of unequal length are provided at two ends below an impervious floor of 12 m length. Total head created on the floor is 2 m. Using Khoslaøs method of independent variables calculate uplift pressures at the junction of inner faces of both piles with the floor. Take upstream pile 3 m deep and downstream pile 4 m deep.	07
		OR	
Q.4	(a)	State the design criteria for Head Regulator and explain the same by giving neat figure.	07

- (b) A horizontal apron of 16 m length a sheet pile is provided at 12 m distance from the upstream end. The sheet pile is of 4 m depth. The weir on the floor stores water upon 3 m height. Calculate uplift pressures at both faces of the sheet pile just below the floor and also at lower end of the sheet pile.
- Q.5 (a) Distinguish between:

07

07

04

10

07

- (i) Aqueduct and Siphon aqueduct,
- (ii) Siphon aqueduct and super passage.
- **(b)** Design a straight glacis fall on the branch canal with following particulars:

Full supply discharge $\frac{u/s}{d/s}$ = 14.5 cumec

Full supply level $\frac{u/s}{d/s} = \frac{40.00}{39.10}$

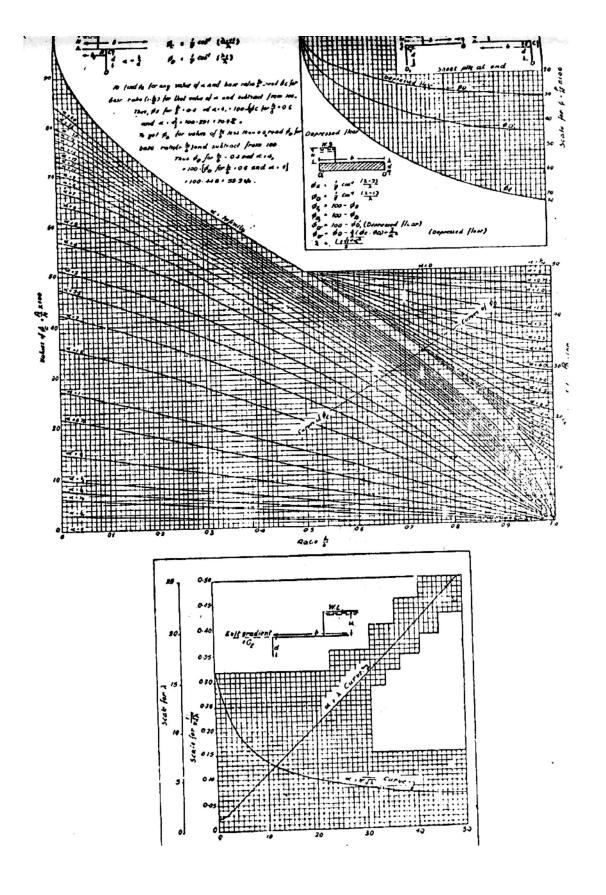
Full supply depth $\frac{u/s}{d/s}$ =1.40 m

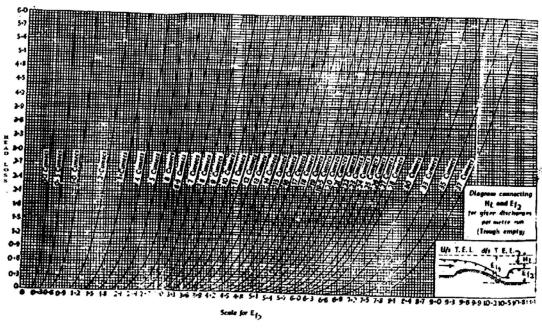
Bed width of canal $\frac{u/s}{d/s}$ = 9.2 m

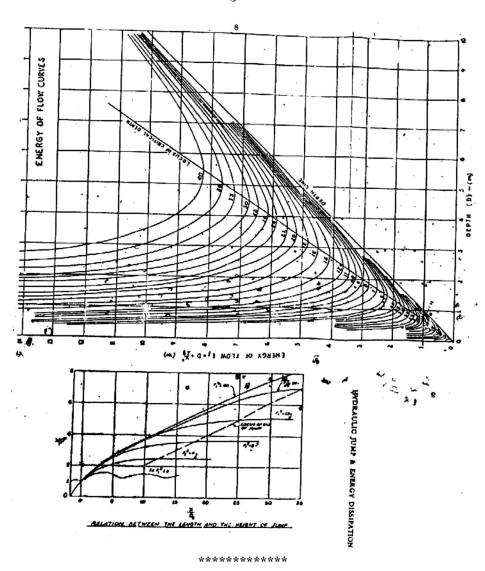
Permissible exit gradient = 1/7

Calculate (1) crest dimensions (2) cistern dimension (3) Cut-off.

OR


- Q.5 (a) What is the necessity of canal falls? Discuss different factors for selecting the location of a fall.
 - **(b)** Design a siphon aqueduct with the following data:
 - (1) Canal:


Discharge 20 cumec Bed width 18 m Depth of water 1.30 m Bed level 250 m


(2) Drainage:

High flood discharge
High flood level
250.70 m
Bed level
248.50
General ground level
250.00 m

Calculate: (1) drainage water way .(2) canal water way (3) head loss and bed level at different sections (4) transitions

