GUJARAT TECHNOLOGICAL UNIVERSITY

M. E. - SEMESTER - I • EXAMINATION - SUMMER • 2014

Subject code: 1724003 Date: 20-06-2014

Subject Name: Optimization in Rubber Industries

Time: 02:30 pm - 05:00 pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full mark.
- Q.1 (a) A poster is to contain 300 cm² of printed matter with margins of 6 cm at the top and bottom and 4cm at each side. Find the overall dimensions that minimize the total area of the poster.
 - (b) An open top box is to be made out of a piece of cardboard measuring 2m X 3m by cutting off equal surfaces from the corners and turning up the side. Find dimensions of the box for maximum volume.
- Q.2 (a) In searching for the minimum of the objective function $y = x_1^2 + 3x_2^2 + 5x_3^2$ using the Sequential Simplex method calculate first simplex. Distance between vertices is a = 0.2 and one of the vertex at the point $\{-1, 2, -2\}$.

(b) Search for an maximum value of discreet function f(x) using following data: 05

					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
X	f(x)	X	f(x)	X	f(x)	X	f(x)
2	41	8.1	55	11	83	20	99
2.2	42	8.2	56	12	84	25	91
3	43	8.5	57	13	84.5	25.5	90
5	45	8.8	58	14	85	26	89.9
6	50	9.1	69	15	88	26,2	89.5
7	53	9.9	75	16	90	26.3	85
8	54	10.1	80	16.5	93	26.6	81

OR

- (b) Find the value of x in the interval (0,1) which minimizes the function 05 f = x(x-1.5) with ± 0.05 using Golden Section search or Fibonacci search technique.
- Q.3 (a) It is required to shift a heavy processing machine inside process area through a passage. The machine is 5 ft wide and 20 ft long. The restriction in the passage is a right-angled turn around the corner from 10 ft wide corridor in to a 6 ft wide corridor. Will we be able to complete the job of shifting through the restriction of the passage? Justify your answer.
 - (b) Carry out two stages of a Hooke-Jeeves search for searching a minimum of the objective function $y = 3x_1^2 + 2x_2^2 + 4x_3^2$. Use $\delta = 0.5$, starting from the base point (1, -2, 2). A stage consists of a local exploration, together with an accelerated move.

OR

- Q.3 (a) Explain univariant search for searching a minimum of three variable objective 05 function.
 - (b) Find the minimum of the function $y = 3x_1 + 5x_2$ 09 Subject to the restrictions $x_1 + 3x_2 \ge 14$

$$2x_{1} - x_{2} \ge 2$$
$$x_{1} - 4x_{2} \le 2$$

$$x_1 + x_2 \le 20$$

with $x_1 \ge 0$ and $x_2 \ge 0$

- Q.4 (a) Explain how the Rosenbrock method gives acceleration in both direction and 07 distance.
 - **(b)** Explain the basics of population based search techniques and discuss **07** working of Genetic Algorithm for optimization.

OR

Q.4 Define a suitable search region and a feasible initial base point for the complex method of search in minimizing $y = 4x_1 + x_2 + 2x_3$ subject to the restrictions that $x_i \ge 0$ and

$$x_1 + x_2 + x_3 \le 6$$

$$5x_1 - x_2 + x_3 \le 4$$

$$x_1 + 3x_2 + 2x_3 \ge 1$$

Q.5

Setup a Box complex method of search and carryout five cycles of search.

Q.5 (a) Explain the duality concept of Kachiyanøs method
(b) Discuss branch and bound algorithms for scheduling.
07

OR

(a) Explain Affine Scaling method
 (b) Discuss effect of Population size, cross over probability and mutation probability on performance of Genetic Algorithm.
