Seat 1	No.: _	Enrolment No.				
		GUJARAT TECHNOLOGICAL UNIVERSITY				
M. E SEMESTER – II • EXAMINATION – SUMMER • 2014 Subject code: 1724707 Date: 23-06-2014						
Subject code: 1724707 Date: 23-06-2014 Subject Name: Mechatronics Signal Processing						
Time: 02:30 pm - 05:00 pm Total Marks: 70						
Instructions:						
		Attempt all questions.				
		Make suitable assumptions wherever necessary. Figures to the right indicate full marks.				
Q:1	A B	Explain and derive the various properties of linear convolution. Perform the circular convolution of the following two sequences:	07 07			
	D	$x_1(n) = \{1, 2, 1\}, x_2(n) = \{1, 2, 3, 4\}$	07			
Q:2	A	Discuss any one specific application of DSP in field of Mechanical /	07			
	n	Mechatronics Engineering.	0.7			
	В	With example, explain difference between 1. time invariant and time variant system	07			
		2. causal and non-causal system				
		3. static and dynamic system				
Q:2	В	OR Derive and draw the Fourier transform of following continuous signals:	07			
Q.2	ь	1. $x(t) = A*\sin(2 *p*t)$	U /			
		2. $x(t) = e^{-t}, t \times 0, > 0$				
0.2		3. Discuss the 7 transform its properties and importance of BOC for LTI	14			
Q:3		Discuss the Z transform, its properties and importance of ROC for LTI system. Find the Z transform, ROC, poles and zeros of the following systems. Also represent ROC, poles and zeros graphically.	14			
		1. $x(n) = \alpha^n u(n)$				
		$2. x(n) = -\beta^n u(-n-1)$				
		3. $x(n) = \alpha^{n} u(n) - \beta^{n} u(-n-1)$				
		Differentiate these systems based on their ROC and write your comments.				
		OR				
Q:3	A	Find the inverse Z- transform using partial fraction expansion:	07			
		$H(z) = \frac{3 + Z^{-1} + Z^{-2}}{1 + 3Z^{-1} + 2Z^{-2}}$				
	В	$1+3Z^{-1}+2Z^{-2}$ Find the inverse Z- transform using residue methods:	07			
	_	The me micros 2 dampoin doing residue memods.	0,			

$$X(z) = \frac{Z^2 + Z}{(Z-1)^2}$$

Q:4 Determine eight point Discrete Fourier Transform of the following signal. 14 The sampling frequency of the signal is 8000 Hz.

$$x(t) = \cos(2\pi \cdot 3000 \cdot t) + 0.5\cos(2\pi \cdot 2000 \cdot t + 3\frac{\pi}{4})$$

Also discuss all properties of DFT for this signal.

OR

Q:4 A Find the eight point FFT of the following signal, sampling frequency is 8000Hz:

$$x(t) = \sin(2\pi \bullet 1000 \bullet t) + 0.5\sin(2\pi \bullet 2000 \bullet t + 3\frac{\pi}{4})$$

	В	Explain the sampling of band limited signal.	04
Q:5	A	Explain FIR filters and importance of different windows in design of FIR filters.	07
	В	Discuss the design of FIR filters for low pass, high pass and band pass frequency.	07
		OR	
Q:5		Explain IIR filters and various methods to design IIR filters with suitable example.	14
