Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

M. E. - SEMESTER – II • EXAMINATION – WINTER • 2013

Subject code: 1720702 Date: 27-12-2013

Subject Name: Digital Signal Processing

Time: 10.30 am – 01.00 pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Define

07

- i) FIR system
- ii) IIR system
- iii) Recursive system
- iv) Shift invariance system
- (b) Obtain direct form-I and direct form –II realization of a system described by following difference equation:

$$y(n)-3y(n-1)-4y(n-2)=x(n)+2x(n-1)$$
.

- Q.2 (a) Define ROC. Explain and prove following properties of Z Transform. (a) 07 Time Shifting (b) scaling in Z-domain (c) Time reversal.
 - (b) Determine Z-transform of following functions and specify ROC. 07
 - (i) $x(n) = [3(2)^n 4(3)^n]u(n)$
 - (ii) $x(n) = cos(\omega_0 n)u(n)$

OR

(b) Explain how the causality of the system can be studied from region of or convergence. Using Z-transform, determine the response of a system described by difference equation:

$$y(n) = (5/6)y(n-1) - (1/6)y(n-2) + x(n)$$
 when input x(n) =\delta(n) -(1/3) \delta(n-1).

- Q.3 (a) Explain Linearity, causality and stability of discrete time system with example.
 - (b) The LTI system initially at rest is described by the difference equation y(n) = (1/4)y(n-1) + x(n). What is the impulse response of this system? Determine the parallel form realization of this system.

OR

- Q.3 (a) The impulse response of a linear time invariant system is h(n)=[4,3,2,1]. 07 Using convolution, determine the response of the system subject to input signal x(n)=[1,2,3,1]. Both h(n) and x(n) samples are given starting from n=0.
 - (b) Convert the analog filter with system function $Ha(s) = \frac{(s+0.1)}{(s+0.1)^2 + 16}$ into a digital IIR filter by means of the bilinear transformation.

Q.4	(a)	Determine the response of FIR filter having the impulse response $h(n)=[1,2,3]$ to the input sequence $x(n)=[1,2,2,1]$ using circular convolution. Both $h(n)$ and $x(n)$ samples are given starting from $n=0$.	07
	(b)	Describe decimation in frequency algorithm to find DFT and draw the signal flow graph for N=8.	07
		OR	
Q.4	(a)	Compute 8-point DFT of $x(n)=[1,0,1,1,0,1,1,1]$ using decimation in time algorithm.	07
Q.4	(b)	Write a note on digital filter bank.	07
Q.5	(a)	Compare and contrast FIR and IIR Filter. Give advantage of each.	07
	(b)	Discuss the Notch filter, give pole-zero diagram and explain how the notch bandwidth can be reduced.	07
		OR	
Q.5	(a) (b)	Explain Harvard architecture and Pipelining for DSP processor. When sectional convolution is used? Explain overlap-add method.	07 07
