Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

M. E. - SEMESTER – III • EXAMINATION – WINTER • 2013

	•	code: 731101 Date: 26-11-2013 Name: I.C.Engine modeling and simulation	
		0.30 am – 01.00 pm Total Marks: 70 etions:	
	2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a) (b)	Classify and Explain different types of diesel combustion system. Write a short note on computational modeling and simulation of I.C. Engine.	07 07
Q.2	(a) (b)	Write a note on fuel-air cycle analysis for petrol engine considering gasoline as fuel. Explain combustion efficiency and inefficiency, considering IC engine as closed system.	07 07
	(b)	OR Give a brief note on Droplet collision model and Droplet/Wall interaction model.	07
Q.3	(a) (b)	Discuss diesel fuel spray structure with major parameter and neat sketch. Explain probability density function.	07 07
Q.3	(a) (b)	OR Generate zero dimensional, single zone models for progressive combustion with burning rate concept. State the procedure followed to generate simple model for engine process.	07 07
Q.4	(a) (b)	Derive a spray combustion model for a low speed marine diesel engine. Derive phenomenological model of CI engine combustion. OR	07 07
Q.4	(a) (b)	Define and discuss spray equation model. Explain different impingement regimes and droplet transition condition with neat sketch.	07 07
Q.5	(a) (b)	Derive wiebe heat release model. What is compression generated turbulence? Discuss its effect. OR	07 07
Q.5	(a) (b)	Define and classify turbulence modeling. Explain procedure for heat release analysis in DI compression ignition engine.	07 07
