Sea	at No.:	Enrolment No	-
		GUJARAT TECHNOLOGICAL UNIVERSITY M. E SEMESTER – II • EXAMINATION – WINTER • 2014	
	•	code: 1720103 Date: 04-12-2014 Name: Advance Compiler Design	
Ti	me: (struc 1 2	22:30 pm - 05:00 pm Total Marks: 70 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a) (b)	Define: Interpreter, Symbol table, Bottom-up parsing, L-attribute, Loader, Predictive parser, Handle. Write a regular expression for given language.	07 07
		All strings of a and b having even number of a øs. Construct optimized DFA for the same without constructing NFA.	
Q.2	(a)(b)	with suitable examples. Write the input, output and action performed by each phase of compiler for following C language statement. (Also mention the entry in data structure if	07 07
		required.) $x = y \% 10 + 5;$ \mathbf{OR}	
	(b)	Construct a syntax directed translation scheme that translates arithmetic expressions from postfix notations into infix notation. Give annotated parse tree for the inputs 95-2*.	07
Q.3	(a)	Write a Lex program to replace all non-null sequence of white spaces by single	07

(b) Write a regular expression for following language and draw -NFA.

(b) Find LR(1) item-sets for the following grammar.

All strings of 0's and 1's that do not contain the substring 011.

OR

Write a Yacc program to evaluate an arithmetic expression involving addition

 $S \rightarrow CC$ $C \rightarrow aC \mid b$

 $S \rightarrow (L) | a$ L -> L,S | S

2. Construct left-most derivation and draw parse tree for sentence (a,(a,a))

1. What are the terminals, non-terminals and start symbol?

07

07

07

07

07

blank character.

and multiplication.

(a) Consider the following grammar:

(b) Consider the following grammar:

Q.3

0.4

Q.4

Q.5	(a)	What are the issues in the design of code generator?	07
	(b)	What do you mean by peephole optimization? Explain any three characteristics	07
		of it with suitable example.	
		OR	
Q.5	(a)	Explain following major code optimization methods with suitable example.	07
	` '	1. Common sub-expression elimination	
		2. Strength reduction	
		3. Dead code elimination	
	(b)	Construct the DAG for following basic block.	07
	()	d = b * c	
		e = a + b	
		b = b * c	
		a = e - d	