Seat No.:	Enrolment No.
Jean 110	

GUJARAT TECHNOLOGICAL UNIVERSITY

Subject Name: Finite Element Method Time: 02:30 pm - 05:00 pm

M. E. - SEMESTER – II • EXAMINATION – WINTER • 2014 Subject code: 1722001 Date: 02-12-2014

Total Marks: 70

Instru	ictio	ns:	
		Attempt all questions.	
		Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	
Q.1	(a)	Obtain stiffness matrix for the CST element whose nodal co-ordinates are as under: Node-1 (3, -2), Node-2 (1, 5) and Node-3 (7,-9). The value of modulus of elasticity = 2×10^{11} N/m2, Poissonøs ratio = 0.3 and thickness of element = 8mm.	07
	(b)		07
Q.2	(a)	Explain the term -shape functions@ Why polynomial terms are preferred for shape functions in finite element method?	07
	(b)	Derive the load vector for two-noded bar element if it is loaded with uniformly distributed load and uniformly varying load along its length. OR	07
	(b)	Write short note on pre and post processors.	07
Q.3		Using FEM, determine nodal displacements, elemental stresses and reaction forces for a bar subjected to axial force shown in Fig.1. The cross sectional area of AB and BC part is 900 mm ² and 2500 mm ² , respectively. Modulus of elasticity of of AB and BC part is 0.8 x 10 ⁵ MPa and 2.1 x 10 ⁵ MPa, respectively.	14
Q.3	(a)		07
	(b)		07
Q.4	(a)	Discuss the use of axi-symmetric element in finite element method. Give various strains to be considered for the same. Also give some real life structures which can be solved by axi-symmetric element.	07
	(b)		07
Q.4	(a)	For the beam and loading as shown in Fig.3 determine slope at B and C, where modulus of elasticity = 210 GPa and moment of inertia = $3.5 \times 10^6 \text{ m}^4$.	07
	(b)	Write short note on Hermite Polynomial.	07
Q.5	(a)	Derive the shape functions for a three-noded bar element using	07 1/2

- polynomial form in local coordinates.
- (b) For a four nodded plate element having four nodes at (1,1), (6,2), (6,5) 07 and (1,4) calculate the Jacobean matrix using one point integration. (All dimensions are in meters.)

OR

- Q.5 (a) Derive the expressions for natural coordinates for a two-noded element 07 in terms of natural coordinate, when range is -1 to 1.
 - (b) Select a suitable displacement function for a beam element and show 07 that it satisfies the convergence criteria.

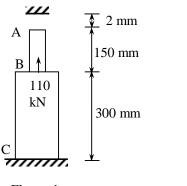


Figure 1

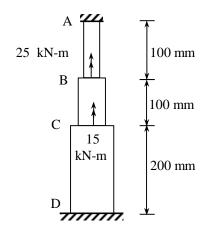


Figure 2

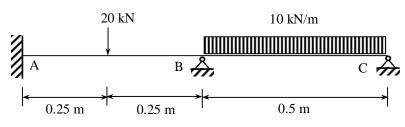


Figure 3