GUJARAT TECHNOLOGICAL UNIVERSITY

M. E. - SEMESTER - I • EXAMINATION - JANUARY • 2015

Subject code: 2712909 Date: 06-01-2015

Subject Name: Higher Engineering Mathematics

Time: 02:30 pm - 05:00 pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q-1 (a) Find Fourier series of $f(x) = x^2$, -2 < x < 2; f(x+4) = f(x). Hence deduce that $\frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$.
 - (b) List and derive various rule and formula to carry out Numerical Integration. 07
- Q-2 (a) Find a real root of $x^3 x 1 = 0$ correct upto three decimal places by Bisection 07 method.
 - (b) The shear stress in klps per square root (ksf) for 5 specimen in a clay stratum are given. Use Newtonøs divided difference interpolation to compute stress at 4.5 m depth.

Depth m	1.9	3.1	4.2	5.1	5.8
Stress ksf	0.3	0.6	0.4	0.9	0.7

OR

- (b) Obtain the vapour pressure of water at 27 C from the following data.

 | x (C) | 10 | 20 | 30 | 40 | 50 |
 | y(mm Hg) | 9.21 | 17.54 | 31.82 | 55.32 | 92.51 |
- Q-3 (a) Using Runge-Kutta second order method, find the approximate value of y at x=1.2 taking h=0.1, where $\frac{dy}{dx} = x^2 + y^2$, y(1) = 0
 - (b) Find a real root of $x^3 5x + 3 = 0$ correct to three decimal places using Newton-Raphson Method.

OR

- Q-3 (a) Solve the following linear system using Gauss Elimination method. 2a+b-c=1, 5a+2b+2c=-4, 3a+b+c=5
 - (b) Use the power method to find the largest Eigen value and corresponding Eigen 07

vector of the matrix
$$\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

- Q-4 (a) Find Half range (a) Fourier Cosine series and (b) Sine series for f(x) = x, 0 < x < L. Also graph the corresponding periodic continuation of f(x)
 - (b) Using Fourier Integral representation, Show that 07

$$\int_{0}^{\infty} \frac{\cos x\lambda + \lambda \sin x\lambda}{1 + \lambda^{2}} d\lambda = \begin{cases} 0 & ; x < 0 \\ \frac{\pi}{2} & ; x = 0 \\ \pi e^{-x} & ; x > 0 \end{cases}$$

OR

Q-4 (a) Consider the following tabular values.

X	25	25.1	25.2	25.3	25.4	25.5	25.6
y	3.205	3.217	3.232	3.245	3.256	3.268	3.280

Determine the area bounded by the given curve and X-axis between x=25 to x=25.6 by trapezoidal rule

- (b) Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ by Gaussian Integration formula with three points.
- Q-5 (a) Use Jacobiøs method to solve the equations $20x+y-2z=17, \ 3x+20y-z=-18, \ 2x-3y+20z=25$
 - (b) Using Taylor's series method, find the solution of the initial value problem $\frac{dy}{dx} = x + y, \ y(1) = 0 \ \text{at } x = 1.2 \text{ with } h = 0.1$

OR

- Q-5 (a) Use Euler s method to find y(1) from the differential equation $\frac{dy}{dx} = x + y, \ y(0) = 1$
 - (b) Find the Eigen value and Eigen vector of the matrix $\begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}$ 07

07