Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

PDDC - SEMESTER-I • EXAMINATION – SUMMER 2013

U		Ode: X11902 Date: 11-06-2013	5	
Subject Name: Engineering Thermodynamics Time: 02.30 pm - 05.00 pm Instructions:		.30 pm - 05.00 pm Total Marks: 70	tal Marks: 70	
msuu	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)) What do you mean by thermodynamics? Explain the concepts of	07	
	(b)	microscopic and macroscopic point of view of thermodynamics. Define the following terms:-	07	
	(D)	(1) Process (2) Cycle (3) Pure substance	07	
		(4) Control volume (5) Closed System		
		(6) Intensive Properties (7) Extensive Properties		
Q.2	(a)	Explain Joule's Experiment for first law of thermodynamics with neat sketch.	07	
	(b)	Derive and explain steady flow energy equation. OR	07	
	(b)	Explain the concept of perpetual motion machine of the first kind.	07	
Q.3	(a)	What are the various limitations of first law of thermodynamics? Explain in detail with various examples.	07	
	(b)	<u>.</u>	07	
		following:-		
		(1) Thermal efficiency(2) Work done		
		(3) Heat Rejected.		
0.2	(-	OR	07	
Q.3	(a)	In a gas turbine unit, the gas flow through the turbine is 14 kg/s and the power developed by the turbine is 11500 kW. The enthalpies of the gases at the inlet and outlet are 1250 KJ/kg and 380 kJ/kg respectively, and the velocity of gases at the inlet and outlet are 45m/s and 100m/s respectively. Calculate the following:- (1) The rate at which heat is rejected to the turbine	07	
		(2) The area of inlet pipe given that the specific volume of the gases		
	, .	at the inlet is 0.40 m ³ /kg.		
	(b	1. State Kelvin-Planck and Clausius statement for second law of thermodynamics.	07	
		2. State and prove Carnot's theorem.		
Q.4	(a)		07	
	(b)	in non-flow systems. Determine the air standard efficiency of Otto cycle from the following	07	
	(~)	data.	,,	
		Bore of the cylinder = 13 cm		
		Stroke Length = 12 cm Clearance volume = 300 cm^3 , Take γ =1.4 OR		
		VA.		

•)7
nd 1 kg of Air at ()7
Gas Calorimeter ()7
()7
equation for the ()7
()7
Ga	as Calorimeter (
