Seat	No.:	Enrolment No	
		GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER-IV • EXAMINATION – SUMMER 2013	
Subject Code: X41102 Date: 06-06-2013			
Tin	•	Name: Control Theory 0.30 am - 01.00 pm Total Marks: 70	
msu	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Define control system & explain with example open loop & close loop control system.	07
	(b)	Describe the transient & steady state response. Also derive the expression for the rise time, maximum overshoot & peak time for 2 nd order control system subjected to unit step.	07
Q.2	(a)	Draw the Force to Voltage analogous circuit for the system with necessary equilibrium equations. (See Fig. 1)	07
	(b)	Define the term Transfer Function. Also determine the transfer function C/R for the system represented by the block diagram reduction techniques. (See Fig. 2) OR	07
	(b)	Define Forward Path, Loop Transmittance & Self Loop. Also Determine the Transfer Function for the system by using Manson's Gain Formula. (See Fig. 2)	07
Q.3	(a)	Define the term sensitivity & discuss the effect of feedback on time constant of a control system.	07
	(b)	The open loop transfer function of a control system is given by $G(s)H(s) = 2(s^2+3s+20)/[s(s+2)(s^2+4s+10)]$ Determine the static error coefficient & steady state error for the input given as: 1) 5 2) 4t 3) $4t^2/2$.	07
		OR	
Q.3	(a)	Explain the derivative control system & derive the expression for the steady state error for the same.	07
	(1-)		^=

- state error for the same.

 (b) Determine the sensitivity of the overall transfer function for the system

 (See Fig. 3) at w= 1 rad/sec w. r. t.

 1) Forward path transfer function

 2) Feedback path transfer function
- Q.4 (a) Sketch the root locus for the open loop transfer function of a unity feedback control system given by, G(s)=K/[s(s+1)(s+3)] & determine the value of K for $\zeta=0.5$ & for marginal stability.
 - (b) List the limitations of Routh's criterion. For given system, $s^4 + 22s^3 + 10s^2 + s + K = 0$, find K_{mar} & w at K_{mar} .

Q.4	(a)	The open loop transfer function of a unity feedback control system is given by	07
		$G(s)=(s+0.25)/[s^2(s+1)(s+0.5)]$ determine the closed loop stability by applying	
		Nyquist criterion.	
	(b)	Explain the correlation between transient response & frequency response.	07
Q.5	(a)	Draw the Bode Plot for the system $G(s) H(s) = 30/[s(1 + 0.5s)(1 + 0.08s)]$.	07
		Determine the GM, PM & comment on stability	
	(b)	Explain in brief observability.	07
		OR	
Q.5	(a)	Define state & state variable. Explain the fact that for any system the set of state	07
		variables are non unique.	
	(b)	Explain the principal of argument.	07
