Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

PDDC - SEMESTER - VIII • EXAMINATION - SUMMER 2014

U		Date: 27-05-2014	
Subject Name: Thermal Engineering Time: 10.30 am to 01.00 pm			75 4 134 1
			Total Marks:
Instr	uctio		
		Attempt all questions.	
		Make suitable assumptions wherever necessary.	
		Use of steam table and Moiler chart is permitted.	
	4.)	Figures to the right indicate full marks.	
Q.1	(a)	Give classification of steam turbine and explain any one typesteam turbine.	pe of 07
	(b)		st the 07
	(6)	different methods for it. Draw a neat sketch for any one.	,, tild (),
Q.2	(a)	Define the following:	07
		(1) Speed ratio	
		(2) Blade velocity coefficient	
		(3) Nozzle efficiency(4) Critical pressure	
	(b)		team 07
	(~)	with initial pressure of 10 bar and 260°C of temperature is	
		expanded down to a back pressure of 1.0 bar. Determine :	
		(1) Throat pressure	
		(2) Velocity at throat (3) Velocity at exit	
		(3) Velocity at exit(4) Flow rate	
		(5) Exit diameter	
		(6) Angle of cone for divergent part of nozzle, if the le	ength
		of divergent portion is 50 mm.	
		OR	_
	(b)	Derive an expression for mass flow rate of steam through no	zzle. 07
Q.3	(a)	For an impulse turbine, explain the following terms and	also 07
		obtained expression for them	
		(1) Power(2) Axial thrust	
		(3) Blade efficiency	
	(b)		220 07
	(6)	m/sec and blade speed ratio is 0.5 and discharge is axial.	
		nozzle angle is 16° and blade friction factor is 0.92. Determi	ne:
		(1) Blade angles at inlet and outlet	
		(2) Theoretical power per kg of steam	
0.3		OR The outlet angle of the blade of a Darson's recetion turbine is	200 07
Q.3	(a)	The outlet angle of the blade of a Parson's reaction turbine is and axial velocity of flow of steam is 0.5 times the mean be	
		velocity. Mass flow rate of steam is 60 kg/sec. If the diamet	
		ring is 1.50 meter and rotational speed is 3000 r.p.m. determ	
		(1) Inlet angles of blades	
		(2) Power developed	
	(b)	Write a short note on: Governing of steam turbine	07

70

Q.4	(a)	Explain the various methods of attachment of blades to	07			
Ų.Ŧ	(a)	turbine rotor.	07			
	(b)	Explain various losses in steam turbine	07			
	. ,	OR				
Q.4	(a)	Steam at a pressure of 15 bar and 250°C is expanded through a turbine at first to a pressure of 4 bar. It is then reheated at constant pressure to the initial temperature of 250°C and finally expanded to 0.1 bar. Estimate: (1) Amount of heat supplied during reheat (2) Work done per kg of steam (3) Work done per kg of steam without reheat cycle	07			
	(b)	Explain regenerative cycle with neat sketch.	07			
	(~)					
Q.5	(a)	State the classification of gas turbine and explain with neat	07			
	√ ■ \	sketch working of closed cycle gas turbine.				
	(b)	A gas turbine unit has a pressure ratio of 6:1 and maximum cycle temperature of 600°C. The isentropic efficiencies of the compressor and turbine are 0.8 and 0.82 respectively. Air enters the compressor at 25°C at the rate of 12 kg/s. Take C_p =1.005 kJ/kg and γ =1.4 for compression process, and C_p =1.11 kJ/kg and γ =1.3 for expansion process . Determine : (1) Compressor work input (2) Turbine work output (3) Net work out put (4) Power developed	07			
	OR					
Q.5	(a)	What is the principle of jet propulsion? Explain turbo popengine.	07			
	(b)	Explain Ram jet with T-S diagram	07			
_	(0)	Emplain Rain jot with 1 5 diagram	V.			
•		ماد				
