GUJARAT TECHNOLOGICAL UNIVERSITY

PDDC - SEMESTER-V • EXAMINATION – WINTER • 2014

Date: 02-12-2014

Subject Code: X 51102

Subject Name: Optical Communication

		me: 10:30 am - 01:00 pm Total Marks: 70 cructions:	
		 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
Q.1	(a)	Draw the block diagram of an optical communication system. Also explain the advantage of the optical communication.	07
	(b)	Explain the following terms with reference to optical communication: 1) Refractive Index. 2) Snell's Law. 3) Skew Ray. 4) Acceptance Angle. 5) Numerical Aperture. 6) Optical Dispersion. 7) Cutoff Wavelength.	07
Q.2	(a)	 Solve the followings A signal of 100 mW is injected into a fiber. The signal detected at the other end is 40 mW. What is the loss in dB? A 2 km length of fiber has an input power of 20 mW and an output power of 150 μW. What is its loss in dB/km? Also express this loss in dBm. 	07
	(b)	Describe briefly the losses in optical fibers. OR	07
	(b)	A glass clad fibre is made with core glass of refractive index 1.5 and the cladding is doped to give a fractional index difference of 0.0005. Find 1) The cladding index. 2) The critical internal reflection angle. 3) The numerical aperture.	07
Q.3	(a) (b)	Discuss briefly the fabry parrot resonator cavity LASER with neat sketch. A graded index fiber with a parabolic refractive index profile core has a refractive index at the core axis of 1.5 and a relative index difference of 1%. Estimate the maximum possible core diameter which allows single mode operation at a wavelength of 1.3 μ m.	07 07
Q.3	(a)	OR Explain pulse broadening in graded-index fiber. Also explain how graded	07
-	(b)	Index profile reduces the dispersion. List the different types of lensing schemes used in optical system and explain it.	07
Q.4	(a) (b)	Discuss Optical fiber splicing techniques in detail. Explain the working of Avalanche Photodiode detector with neat sketches and relevant mathematical expressions. OR	07 07
Q.4	(a)	Classify the optical amplifier and explain any one in brief.	07

	(b)	Describe key system requirements needed for analyzing point to point link.	07
		Discuss the component selection for the same based on the characteristics of the components.	
Q.5	(a)	Explain block diagram of optical receiver.	07
	(b)	Write a short note on	07
		1) Optical couplers.	
		2) Optical circulators.	
		OR	
Q.5	(a)	Write detail note on synchronous optical network (SONET).	07
	(b)	Describe the insertion loss method for optical attenuation measurement.	07
